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Section 3 

Probability and Random Variables 

3.1 – Core Probability Concepts 

Sample spaces 

In class this week, we began examining probability through simulating random processes in the 

TinkerPlots sampler. This section aims to formalize probability content by examining the theory of 

random processes. We call such a process that leads to one of several possible outcomes an 

____________________.  All such possible outcomes form a set called the ______________________, usually 

denoted S. 

 Example: Write out the sample spaces for the following experiments: 

 

 Flip a coin.     S = 

 

 Roll a six-sided die.   S = 

 

 Flip two coins in sequence.  S = 

 

 Flip three coins in sequence. S = 

 

 

 

 

When examining the outcomes of an experiment, we often focus on specific outcomes of interest. 

We call such a subset of a sample space an ____________. We can then turn to probability to find how 

likely something interesting to us is! 

Example: Find the probability of getting exactly two heads when flipping three coins in 

sequence. 

 

 

 

Now, find the probability of getting three heads. 
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Properties of probabilities  

There are three basic axioms of probability that define how probability works more generally. Let E 

be an event of a sample space S. 

1. 0 ≤ P(E) ≤ 1 

2. P(S) = 1 

3. For any disjoint events E1, E2 

𝑃(𝐸1 or 𝐸2) = 𝑃(𝐸1) + 𝑃(𝐸2) 

Note: Two events are disjoint or mutually exclusive if P(A and B) = 0, that is, they cannot happen 

together. 

The complement of an event A, denoted Ac or A’, is defined as the opposite of the given event A, that 

is, all elements of the sample space not included in A. 

 

 

 

 

 

Complement Rule: P(Ac) =  

 

Conditional probability 

Example: Consider the following table of counts below: 

   Income Level   
  High (H) Mid (D) Low (L)  
 

Marital Status Not Married (N) 30 40 30 100 
Married (M) 60 50 40 150 

  90 90 70 250 
 

Find the following probabilities: 

 P(N) =  

 

 P(H) = 

 

P(N and H) =    
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We found the probability of selecting an unmarried person, a person of high income, and an 

unmarried person of high income. How would we go about finding the probability of selecting 

someone of high income, given that we know the person is unmarried? 

 P(H | N) =  

 

The conditional probability of A given B is  

P(A | B) =     

 

We can think of these probabilities as working with known information. The event provided after 

the “|” is something that we know is true, and are now working to find the probability knowing this. 

Notice that the definition of conditional probability gives us information about the intersection too, 

if we simply rearrange the terms from the conditional probability above.  

P(A and B) =     

 

But sometimes, knowing some given event happens doesn’t actually affect the probability of 

another event. Perhaps there’s a certain probability that you attend this class on a particular day. 

There are probably many things that will change this probability – a rainy day may make you less 

likely to attend, or maybe other personal events in your life may occur that would lower the 

probability of your attendance. But there are some events that may not affect this too much: it’s 

likely that the event of you receiving a spam call or the event that someone else in the USA winning 

the Powerball lottery will not have an impact on how likely you attend class. If that is the case that 

knowing one event happens doesn’t affect the probability of another event, we can say two events 

are independent. Mathematically, we can write the condition for independence as: 

P(A | B) =   (for independent events A, B) 

 

We can also write out an alternative rule for independence, based on the multiplication rule for 

intersections above. 

P(A and B) =   (for independent events A, B) 

 

Important: While they sound similar, independent events are not the same as mutually exclusive 

or disjoint events! In fact, mutually exclusive events are very dependent. If A and B are mutually 

exclusive and A occurs, then you know for a fact that B did not happen! 

As your instructor, I would sincerely hope that the event you attend this class and the event that it 

is rainy are independent events, but experience has unfortunately told me that this isn’t true.       
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3.2 – Discrete Random Variables 

Definition of random variable 

We now define new tools to convey a numerical description of items in the sample space and their 

associated probabilities. 

Let S be a sample space. A _____________________ is a function X : S ⟶ ℝ, equating outcomes from a 

sample space to a numerical value. 

Example: Consider the experiment of flipping 3 coins, and let X be a random variable for the 

number of heads. 

 

 

 

 

 

 

Random variables give us a way to relate the outcomes of an experiment to a numeric value, but it 

doesn’t tell us anything about probability.  We need to assign another function to determine the 

probability of certain numeric values for a random variable. 

The type of function we assign to a variable differs depending upon what kind of variable we are 

measuring in the first place. There are two types of random variables: __________________ and 

_________________. In this section, we will only talk about discrete random variables.  

Probability mass functions 

If the random variable we are working with has a _________________ range, that is, the possible 

numeric values the random variable can be is _________________, we say that it is a discrete random 

variable.   

To talk about probabilities for a discrete random variable, we define a probability mass function 

(pmf). The probability mass function for a discrete random variable is defined pX : ℝ ⟶ [0, 1], 

where pX(x) = P(X = x), and must satisfy the property: 

∑ 𝑝𝑋(𝑥)
𝑎𝑙𝑙 𝑥

= 1 

All of this mathematical jargon is really just masking the main axioms of probability we discussed 

previously in terms of a new probability function. Specifically, these just make sure that for our 

probability function that all probabilities should always be between 0 and 1, and that the 

probabilities of all outcomes must add up to 1.  

 Example: For the previous experiment of flipping 3 coins, write out the pmf of X. 
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Describing and summarizing discrete random variables 

We now explore several summary measures of a random variable. The first one we will examine is 

the expected value, which is synonymous with the mean value of the random variable. We define the 

expected value as 

μ = E(X) =    

 

Example: For the previously discussed experiment of flipping three coins, find the expected 

value of X. 

 

 

 

 

 

We can also look at measures of variability on random variables. Similar to the sample variance 

measure we defined previously on a set of data, we can define the variance of a random variable as 

σ2 = Var(X) = E[(X – μ)2] =     

Computationally, this is not too fun to do. But we can make it slightly easier on ourselves by doing 

some rearranging of the definition above: 

 

 

 

 

 

 

 

 

Thus, we get the alternative formula for the variance of X below. 

Var(X) =    

 

When we defined the sample variance, we defined the sample standard deviation as the square root 

of the sample variance. That relationship holds up in the random variable case as well! 

σ =  SD(𝑋)  =  √Var(𝑋) 
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Example: For the previously discussed experiment of flipping three coins, find the variance 

and standard deviation of X. 

 

 

 

 

 

 

 Example: For the pmf given in the table below, find E(X) and Var(X). 

x 0 1 2 3 4 

p(x) 0.4 0.2 0.15 0.15 0.1 

 

 

 

 

 

 

 

When we’re working with expected values and variances, there are nice properties we can leverage 

with linear functions of a random variable. Let a, b be real numbers, and X a random variable. 

E(aX + b) =      

 

 

 

 

Var(aX + b) =      
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These properties also hold for linear combinations of random variables: 

E(X ± Y) = E(X) ± E(Y) 

Var(X ± Y) = Var(X) + Var(Y) 
 
Notice the ± in the equation for variance above doesn’t stay on the right side of the equation. Why is 
that the case – specifically, why would taking the difference of two random variables result in a 
larger variance? 
 

The binomial distribution 

When modeling real world experiments, we can often map these to common probability models or 

distributions. There are many distributions we will not cover in this class (e.g. geometric, Poisson), 

but we will focus on the binomial distribution. 

The binomial distribution is commonly used to model random sampling from a population where 

outcomes are categorical in nature. This model is something that we’ve been looking at informally 

too with some of the examples we’ve already seen! 

The binomial distribution: X ~ Bin(n, p) 

𝑝𝑋(𝑥) =  
𝑛!

𝑥!(𝑛−𝑥)!
𝑝𝑥(1 − 𝑝)𝑛−𝑥, x = 0, 1, … , n 

Used to count the number of successes in n independent trials that have a probability p each of 

succeeding.  

Characteristics of a binomial experiment: 

• There are always a fixed number of trials, n. 

• Each trial has two outcomes: success and failure. 

• The probability of success is fixed from trial to trial. 

• Each trial is independent – that is, results from previous trials don’t influence the 

outcome of other trials. 

Example: A bike shop is ordering new bikes from a supplier, and they always order in 

shipments of 3 bikes. Before selling bikes, this shop always does an inspection of the bikes 

to ensure all components are aligned and working properly. Based on their history with the 

manufacturer, 90% of all bikes shipped to them are ready to be sold without any further 

work done.  

If X is a random variable for the number of bikes ready to be sold immediately, does X 

represent a binomial experiment? 
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While we can use the equation for the pmf above to find binomial probabilities, this can be 

cumbersome, especially if you need to find the probability for an inequality probability. Thus, we 

will primarily focus on computing binomial probabilities in R. The various functions you can use 

with the binomial distribution are given below. 

dbinom(x, n, p) #gives the probability P(X = x) 
pbinom(x, n, p) #gives the probability P(X ≤ x) 
qbinom(q, n, p) #finds the value x value where P(X ≤ x) = q 
rbinom(k, n, p) #randomly generates k data points that come 
                 from a Bin(n, p) distribution 

Example: The bike shop has two customers that have placed pre-orders for this bike. What 

is the probability that this shipment will have at least two bikes ready to sell with no 

additional work to be done? 

 

 

 

 

 

 

 

 

 

 

 

 

In our last activity in TinkerPlots, we examined the probability experiments of flipping 10 coins and 

drawing 10 cards from a deck of playing cards. Let’s revisit these scenarios now in light of the 

binomial distribution.  

Example: Are counting the number of heads and counting the number of hearts binomial 

experiments? 
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Example: For the coins scenario, find the probability that you get exactly 5 heads, exactly 8 

heads, and exactly 2 heads. How do these probabilities compare to your TinkerPlots 

simulation from last activity? 

 

 

 

 

 

 

 

To find the mean and variance of a binomial random variable, we can start with the case of when n 

= 1. In this case, there would only be two possible outcomes for X, 0 and 1. Thus, we can easily find 

the following:  

E(X) =  

 

Var(X) =  

 

Now, we can see that to get to a binomial distribution with any n, we could consider adding up 

many binomial random variables with n = 1. So long as these outcomes are independent, their sum 

would equal the total number of successes (or 1’s) that occurred in each of the individual trials. 

Thus, using our rules for expected values of sums, we can find that for any binomial distribution: 

E(X) =  

 

 

 

Var(X) =  

 

 

 

 

Example: Find the expected value and variance for the number of bikes ready to be sold 

from the previous example. 
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3.3 – Continuous Random Variables 

Probability density functions 

Last section, we talked about discrete random variables and common models like the binomial 

distribution. This chapter, we will talk about continuous random variables. 

If the random variable we are working with has a _________________ range, that is, the possible 

numeric values the random variable can be is _________________, we say that it is a continuous random 

variable.   

For discrete random variables, we assigned to each possible outcome a probability using the 

probability mass function. However, we now have an uncountable set of possible values for the 

range of our random variable, like all of ℝ or an interval like [0, 1]. If we were to try to assign 

probabilities to an uncountably infinite number of values, we wouldn’t be able to make the 

probabilities add up to 1 – they would greatly exceed that! 

Thus, we need a new tool to allow us to take probabilities over ranges of values. We now use 

functions known as probability density functions to do this. These functions allow you to find 

probabilities for ranges of values for the distribution by calculating the area underneath the 

function within that range. To preserve the idea that all of the probability must “add up” to 1, a 

probability density function must have all area under the function equal to 1.  

Let’s start with a basic example of a probability density function! 

Example: A student takes MTD’s Green (5) bus into campus. They haven’t memorized the 

schedule, but they know that during the middle of the day that the bus leaves every 15 

minutes. Assuming that the bus arrives on time, what is the probability that they will wait 

no more than 8 minutes for the bus to arrive? 

 

 

 

 

 

 

 

 

So, areas under functions are easy to find when they’re familiar geometric shapes like rectangles. 

But limiting our probability modeling to geometric area formulas is not very versatile. 

Unfortunately, we need calculus to compute the area under functions generally, and this is not a 

prerequisite for this class. (I’m guessing most people are thinking this is more fortunate than 

unfortunate, and I can respect that. Enjoy your calculus in Stat 400, stat majors!) 

However, R is quite good at finding areas under functions, especially functions for well-known 

distributions. And the most well-known continuous distribution is… 
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The normal distribution 

The normal distribution is probably the most loved, known, used and misused distribution of them 

all. You’ve probably heard of bell-curves before in relation to modeling test scores, human heights, 

and many other natural phenomena. You might have also heard it in terms “curving” grades in a 

class – in practice, this has little to do with making grades look like a normal distribution, but 

instead, ends up in the instructor being nice and giving out more points than originally earned.  

Just for fun, let’s take a look at the function that defines the normal distribution: 

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒

−
1

2
(

𝑥−𝜇

𝜎
)

2

, –∞ < x < ∞ 

In the normal distribution above, the parameters μ and σ are the mean and standard deviation of 

that normal distribution. In fact, there is no way to use calculus to determine probabilities with this 

function in a closed form, so we have to use other tools to compute probabilities. 

Before the widespread use of computers, the primary method was to convert everything to a 

standard normal distribution. Usually denoted with the random variable Z, the standard normal 

distribution is a normal distribution with mean 0 and standard deviation 1. When drawn, this looks 

something like the picture below: 

 

 

 

 

The usefulness of a standard normal distribution is realized by the following fact: If a random 

variable X is distributed N(μ, σ), then the random variable Z, defined as 

 

𝑍 =    

 

has a standard normal distribution. This quantity is typically referred to as a ___________________, 

which tells you how many standard deviations one data value is from the mean. 

 

Thus, for any normal distribution, we could use this to convert something from any normal 

distribution to a standard normal distribution, and then use a probability table to find the solution. 

Such methods are irrelevant with the use of computers! Like with the binomial distribution, R gives 

ways to calculate the probabilities of a normal distribution.  

dnorm(x, μ, σ) #gives the height of the density function 
pnorm(x, μ, σ) #gives the probability P(X ≤ x) 
qnorm(q, μ, σ) #finds the value k where P(X ≤ k) = q 
rnorm(k, μ, σ) #randomly generates x data points that   
                come from a N(μ, σ) distribution 

If you leave the fields for the mean and standard deviation blank, R will assume a standard normal 

distribution. 

 



 

 ~ 36 ~ 
 

Let’s try some examples of normal probabilities that use these R functions. 

Example: Assume that for a specific population, heights are normally distributed with μ = 68 

inches and σ = 2 inches. What percentage of the population is taller than 72 inches? 

 

 

 

 

 

 

Example: Assume that speeds on Interstate 57 are normally distributed with μ = 68 mph 

and σ = 4 mph. Find the 85th percentile of these speeds. 

 

 

 

 

 

 

Example: For the Interstate 57 speed example, find the 2 speeds that contain the middle 

90% of all speeds on Interstate 57. 
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3.4 – Additional Practice 
Example: An archer can hit the bullseye with an arrow 40% of the time. If the archer takes 6 

shots in a given round, what is the probability they hit at most 1 bullseye? 

 

 

 

 

What is the probability they hit 4 or more bullseyes? 

 

 

 

 

What is the expected number of bullseyes the archer will hit? What is the variance? 

 

 

 

Example: Measuring blood pressure provides many challenges due to the variation in 
measurements depending on the time within a cardiac cycle it is taken. Adults are often 
diagnosed for treatment of high blood pressure when they report a blood pressure of 140 
mm Hg. For a patient whose average blood pressure is 130 mm Hg and standard deviation 
is 13 mm Hg, what is the probability that a doctor will diagnose this patient with high blood 
pressure? Assume that this patient’s distribution of blood pressure measurements is 
normally distributed.  

 

 

 

 

What blood pressure reading would represent the largest measurement among the lowest 
25% of measurements? What blood pressure reading would represent the smallest 
measurement among the highest 25% of measurements?  

 

  

https://academic.oup.com/ajh/article/21/1/3/137216
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